Computer Simulations Of The Oxygen (O₂) Atmosphere Of Europa

M A Moreno and D Winterhalter (Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91 109)

J Baumgardner (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

We have developed numerical gas-dynamic computer simulations of the molecular oxygen, 0, atmosphere of Europa and compare the results with the recent Hubble Space Telescope observations. In our model, we start with a H₂0 ice frost after which sublimation caused by solar heating leads to the formation of a thin H₂O vapor atmosphere, Dissociation of H₂0 by solar UV and association of the product oxygen atoms in three body reactions competing with UV dissociation of 0, lead to the formation of a molecular 0, atmosphere. We also include surface sputtering by torus plasma as a source of H₂0 and 0₂. We use a surface temperature based on Voyager measurements, as well as a vapor pressure for H₂0 and 0₂ based on laboratory experiments. We divide the atmospheric domain into a mesh of 10⁵ computational cells and solve the equations of mass, energy momentum conservation and equation of state. We find the pressure, density, temperature and wind velocities as a function of altitude and colatitude angle from the subsolar point region. This model allows us to obtain the structure and dynamics of Europa's 0, atmosphere going from agreement with recent HST observations, to those features which have not been observed yet, such as wind velocity, temperature and details of atmospheric structure. We also propose that Europa has an H₂O, 0, $S0_2$, and Sodium atmosphere coexisting with 0_2 . We base these arguments on HST and other observations of the reflection spectrum of its surface and on the Voyager in situ measurements of torus ions in the vicinity of Europa. We propose that sodium ions implanted on the surface are subsequently sublimated and also sputtered, forming a steady state thin sodium atmosphere imbedded in 0, 0 and S0, atmosphere. We focus on the detailed structure of the 0₂ atmosphere of Europa, but also present results from the H₂0, S0₂ and Sodium simulations verifying the viability of these irnbedded species.

- 1. 1995 Spring Meeting
- 2. 011633400 (AGU Member)
- 3. (a) Miguel Moreno
 Jet Propulsion Laboratory
 4800 Oak Grove Drive
 M/S 169-506
 Pasadena, CA 91109-8099
 - (b) Tel: 310-447-5495
 - (c)fax: 818-354-8895
- 4. P
- 5. (a)5445
 - (b) 5435,5410,2732
- 6. N/A
- 7. None
- 8. \$50 check enclosed
- 9. C
- 10. Schedule paper together, before or after papers on the Hubble Space Telescope observations of Europa's 0₂ atmosphere.
- 11. No